Identification of critical genes in nucleus pulposus cells isolated from degenerated intervertebral discs using bioinformatics analysis
نویسندگان
چکیده
Intervertebral disc (IVD) degeneration is a pathological process, which may lead to lower back pain. The present study aimed to investigate the pathogenesis of IVD degeneration. GSE42611 was downloaded from Gene Expression Omnibus, including 4 nucleus pulposus samples isolated from degenerated IVDs and 4 nucleus pulposus samples separated from normal IVDs. The differentially expressed genes (DEGs) between the degenerated and normal samples were screened using the limma package in R. Functional and pathway enrichment analyses were conducted separately for the upregulated and downregulated genes, using Database for Annotation, Visualization and Integrated Discovery software. In addition, protein‑protein interaction (PPI) networks were constructed using the Search Tool for the Retrieval of Interacting Genes database and Cytoscape software. Finally, module analyses were conducted for the PPI networks using the MCODE plug‑in in Cytoscape. A total of 558 DEGs were identified in the degenerated nucleus pulposus cells: 253 upregulated and 305 downregulated. Pathway enrichment analysis revealed that downregulated thrombospondin 1 (THBS1) was enriched in extracellular matrix‑receptor interaction. Interleukin (IL)‑6 in the PPI network for the upregulated genes and vascular endothelial growth factor A (VEGFA) in the PPI network for the downregulated genes had higher degrees. Additionally, four modules (µM1, µM2, µM3 and µM4) were identified from the PPI network for the upregulated genes. Four modules (dM1, dM2, dM3 and dM4) were identified from the PPI network for the downregulated genes. In the dM2 module, collagen genes and integrin subunit α4 (ITGA4) may interact with each other. Additionally, functional enrichment indicated that collagen genes were enriched in extracellular matrix organization. In conclusion, IL‑6, VEGFA, THBS1, ITGA4 and collagen genes may contribute to the progression of IVD degeneration. These results suggested that the manipulation of these genes and their products may have potential as a novel therapeutic strategy for the treatment of patients with IVD.
منابع مشابه
Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملAdipose-derived stem cells improve the viability of nucleus pulposus cells in degenerated intervertebral discs.
Patients with degenerative disc disease (DDD) experience serious clinical symptoms, including chronic low back pain. A series of therapies have been developed to treat DDD, including physical therapy and surgical treatment. However, the therapeutic effect of such treatments has remained insufficient. Recently, stem cell‑based therapy, in which stem cells are injected into the nucleus pulposus i...
متن کاملPotential use of Sox9 gene therapy for intervertebral degenerative disc disease.
STUDY DESIGN A new recombinant adenoviral vector expressing Sox9, a chondrocyte-specific transcription factor, was tested in a chondroblastic cell line and primary human intervertebral disc cells in vitro. Direct infection of intervertebral disc cells then was assessed in a rabbit model. OBJECTIVES To deliver a potentially therapeutic viral vector expressing Sox9 to degenerative human and rab...
متن کاملFibroblast Transplantation Results to the Degenerated Rabbit Lumbar Intervertebral Discs
BACKGROUND Our study is an analysis of the histological and radiological changes in degenerated lumbar intervertebral discs, after transplantation of fibroblasts in rabbits. With that study we aimed to show the viability of the fibroblasts injected to the degenerated discs, and observe their potential for further studies. METHOD The apoptosis of the cell is one of the factors at the disc dege...
متن کاملEx Vivo Observation of Human Nucleus Pulposus Chondrocytes Isolated From Degenerated Intervertebral Discs
STUDY DESIGN We performed an ex vivo study to observe cell morphology and viability of human nucleus pulposus (NP) chondrocytes isolated from degenerated intervertebral discs (IVD). PURPOSE To better understand the biological behavior of NP chondrocytes in monolayer cultures. OVERVIEW OF LITERATURE Biological repair of IVDs by cell-based therapy has been shown to be feasible in clinical tri...
متن کامل